Pages

Minggu, 11 November 2012

ANIMASI : MOMEMTUM LINIER

live infocus : klik disini

MOMENTUM DAN IMPULS

PENGERTIAN MOMENTUM DAN IMPULS.

Setiap benda yang bergerak mempunyai momentum.
Momentum juga dinamakan jumlah gerak yang besarnya berbanding lurus dengan massa dan kecepatan benda.
Suatu benda yang bermassa m bekerja gaya F yang konstan, maka setelah waktu t benda tersebut bergerak dengan kecepatan :

                                                vt = vo + a . t
                                                vt = vo +  . t

                                           F . t = m . vt – m.vo

Besaran F. t disebut : IMPULS sedangkan besarnya m.v yaitu hasil kali massa dengan kecepatan disebut : MOMENTUM

m.vt  = momentum benda pada saat kecepatan vt
m.vo = momentum benda pada saat kecepatan vo

Kesimpulan

Momentum ialah : Hasil kali sebuah benda dengan kecepatan benda itu pada suatu saat.
                               Momentum merupakan besaran vector yang arahnya searah dengan
                               Kecepatannya.
                               Satuan dari mementum adalah kg m/det atau gram cm/det

Impuls adalah : Hasil kali gaya dengan waktu yang ditempuhnya. Impuls merupakan
                          Besaran vector yang arahnya se arah dengan arah gayanya.

Perubahan momentum adalah akibat adanya impuls dan nilainya sama dengan impuls.

                                     IMPULS = PERUBAHAN MOMENTUM









HUKUM KEKEKALAN MOMENTUM.

                     vA                                                                                      vA’
                                  vB                     FBA                                                 vB’        
                                   FAB                           

Misalkan benda A dan B masing-masing mempunyai massa mA dan mB dan masing-masing bergerak segaris dengn kecepatan vA dan vB sedangkan vA > vB. Setelah tumbukan kecepatan benda berubah menjadi vA’ dan vB’. Bila FBA adalah gaya dari A yang dipakai untuk menumbuk B dan FAB gaya dari B yang dipakai untuk menumbuk A, maka menurut hukum III Newton :

                                                         FAB = - FBA
                                                  FAB . t = - FBA . t
                                                (impuls)A = (impuls)B

                                    mA vA’ – mA vA = - (mB vB’ – mB vB)

                                    mA vA + mB vB  = mA vA’ + mB vB’  

Jumlah momentum dari A dan B sebelum dan sesudah tumbukan adalah sama/tetap. Hukum ini disebut sebagai HUKUM KEKEKALAN MOMENTUM LINIER.

TUMBUKAN.

Pada setiap jenis tumbukan berlaku hukum kekekalan momentum tetapi tidak selalu berlaku hukum kekekalan energi mekanik. Sebab disini sebagian energi mungkin diubah menjadi panas akibat tumbukan atau terjadi perubahan bentuk :

Macam tumbukan yaitu :

Tumbukan elastis sempurna, yaitu tumbukan yang tak mengalami perubahan energi.
Koefisien restitusi e = 1

Tumbukan elastis sebagian, yaitu tumbukan yang tidak berlaku hukum kekekalan energi mekanik sebab ada sebagian energi yang diubah dalam bentuk lain, misalnya panas.
Koefisien restitusi    0 < e < 1


Tumbukan tidak elastis , yaitu tumbukan yang tidak berlaku hukum kekekalan energi mekanik dan kedua benda setelah tumbukan melekat dan bergerak bersama-sama.
Koefisien restitusi   e = 0

Besarnya koefisien restitusi (e) untuk semua jenis tumbukan berlaku :


                                   

  = kecepatan benda A dan B setelah tumbukan
vA ; vB = kecepatan benda A dan B sebelum tumbukan

Energi yang hilang setelah tumbukan dirumuskan :

Ehilang = Eksebelum tumbukan - Eksesudah tumbukan

            Ehilang  = { ½ mA vA2 + ½ mB vB2} – { ½ mA (vA’)2 + ½ mB (vB’)2}

Tumbukan yang terjadi jika bola dijatuhkan dari ketinggian h meter dari atas lanmtai.

Kecepatan bola waktu menumbuk lantai dapat dicari dengan persamaan :
vA =  
Kecepatan lantai sebelum dan sesudah tumbukan adalah 0.
vB = vB’ = 0
Dengan memsukkan persamaan tumbukan elstis sebagian :

                              
     diperoleh :          atau     

    dengan demikian diperoleh :  

     h’ = tinggi pantulan               h = tinggi bola jatuh.

    Untuk mencari tinggi pntulan ke-n dapat dicari dengan : hn = h0 e2n

BAB 5
MOMENTUM DAN IMPULS
Sumber: Serway dan Jewett, Physics for Scientists and Engineers, 6th edition, 2004
Gambar di atas adalah salah satu contoh peristiwa dari konsep
momentum dan impuls. Masih banyak lagi disekitar kita tentang
peristiwa yang menggambar kan peristiwa tersebut. Momentum adalah
ukuran kesukaran untuk memberhentikan suatu benda yang sedang
bergerak. Makin sukar memberhentikan benda, makin besar
momentumnya. Kesukaran memberhentikan suatu benda bergantung
pada massa dan kecepatan. Sedangkan impuls berkaitan dengan
perubahan momentum. Impuls juga didefinisikan sebagai hasil kali
gaya dengan selang waktu singkat bekerjanya gaya pada benda.
Konsep momentum ini penting karena konsep ini juga menunjukkan
kekekalan, seperti halnya kekekalan energi mekanik. Konsep kekekalan
momentum dan impuls dapat membantu kita untuk menjelaskan
massalah keseharian dan teknologi. Kejadian yang berkaitan dengan
peristiwa tumbukan dapat dijelaskan dengan hokum kekekalan
momentum dan impuls. Ada tiga jenis tumbukan berdasarkan
elastisitasnya (kelentingannya), yaitu tumbukan lenting sempurna, tak
lenting sama sekali dan lenting sebagian.
132
PETA KONSEP
133
Prasyarat
Agar dapat mempelajari bab ini anda harus telah menguasai vektor,
materi gerak dan gaya, dan materi usaha dan energi. Materi gerak
meliputi gerak lurus dan gerak lengkung, yaitu gerak parabola dan
gerak melingkar. Selain gaya yang berkaitan dengan hukum-hukum
Newton, anda harus menguasai juga gaya gesek.
Cek Kemampuan
1. Jelaskan yang anda ketahui tentang:
a. Momentum
b. Impuls
c. Hukum kekekalan momentum
d. Tumbukan lenting sempurna
e. Tumbukan tak lenting sama sekali
f. Tumbukan lenting sebagain
g. Koefisien restitusi
2. Dua buah benda memiliki energi kinetik sama, tetapi massanya
berbeda. Apakah momentum kedua benda tersebut sama ?
Jelaskan jawaban anda!
3. Momentum adalah besaran vektor. Apakah pernyataan tersebut
benar ? Berikan alasan jawaban anda.
4. Seorang tentara menembak dengan senjata laras panjang.
Mengapa tentara tersebut meletakkan gagang senjata pada
bahunya? Berikan penjelasan anda berkaitan dengan impuls
dan momentum.
5. Anda bersepeda motor dengan kelajuan tinggi, tiba-tiba sepeda
motor berhenti mendadak dan anda terpelanting melampaui
setir. Mengapa anda dapat terpelanting melampaui setir?
6. Dua buah benda terbuat dari bahan yang mudah melekat dan
massa kedua benda sama, bergerak saling berlawanan arah
dengan kelajuan sama dan bertumbukan. Sesaat setelah
tumbukan kedua benda saling melekat dan kemudian berhenti.
Apakah jumlah momentum kedua benda kekal, sebelum dan
sesudah tumbukan? Bagaimana dengan energi kinetiknya?
5.1 Pengertian Momentum Dan Impuls
Setiap benda yang bergerak mempunyai momentum.
Momentum adalah hasil kali antara massa dan kecepatan. Secara
matematis dapat dituliskan sebagai berikut:
134
P􀀠m.v (5.1)
dengan:
P = momentum (kg.m/s)
m = massa (kg)
v = kecepatan (m/s)
Contoh Soal 1:
Sebuah truk bermassa 3 ton bergerak dengan kecepatan tetap 20 m/s.
Berapakah momentum yang dimilikinya?
Penyelesaian:
Dengan menggunkan persamaan (5.1), maka kita mendapatkan
besarnya momentum truk tersebut sebesar 􀃆 P = mv = 30.000 kg.20
m/s = 600.000 kg.m/s = 6.105 kg.m/s.
Dalam kehidupan sehari-hari banyak ditemui peristiwaperistiwa
seperti bola ditendang, bola tenis dipukul. Pada peristiwa itu,
gaya yang bekerja pada benda hanya sesaat saja, inilah yang disebut
sebagai impuls. Secara matamatis dapat dituliskan sebagai berikut:
I 􀀠 F.􀀧t (5.2)
dengan:
I = impuls (N.s)
F = gaya (N)
􀇻t = selang waktu (s)
Contoh Soal 2:
Sebuah bola dipukul dengan gaya sebesar 45 N, jika gaya itu bekerja
pada bola hanya dalam waktu 0.1 s. Berapakah besarnya impuls pada
bola tersebut?
Penyelesaian:
Dengan menggunakan persamaan (5.2), maka kita dapatkan besarnya
impuls dalam persoalan ini yaitu sebesar:
I = F. 􀇻t = 45 N.0,1s = 4,5 N.s
5.2 Impuls sebagai perubahan Momentum
Suatu benda yang bermassa m bekerja gaya F yang konstan, maka
setelah waktu 􀀧t benda tersebut bergerak dengan kecepatan :
v v a t t 􀀠 􀀎 .􀀧 0 (5.3)
Menurut Hukum II Newton:
135
F 􀀠m.a (5.4)
Dengan mensubtitusi Persamaan (5.4) ke Persamaan (5.3), maka
diperoleh:
(5.5)
(5.6)
dengan:
m.vt = momentum benda pada saat kecepatan vt
m.v0 = momentum benda pada saat kecepatan vo
Kesimpulan:
Momentum ialah: Hasil kali massa sebuah benda dengan
kecepatan . Momentum merupakan besaran vektor yang arahnya searah
dengan kecepatannya. Satuan dari mementum adalah kg m/s atau gram
cm/s
Impuls adalah: Hasil kali gaya dengan waktu yang
ditempuhnya. Impuls merupakan Besaran vektor yang arahnya searah
dengan arah gayanya.
Perubahan momentum adalah akibat adanya impuls dan
nilainya sama dengan impuls.
Contoh Soal 3:
Sebuah bola golf mula-mula diam, kemudian dipukul hingga
kecepatanya menjadi 8 m/s. Jika massa bola 150 gram dan lamanya
waktu stick bersentuhan dengan bola 0,02 s. Berpakah besarnya gaya
yang mendorong bola tersebut?
Penyelesaian:
Dengan menggunakan persamaan 5.6, maka besarnya gaya dapat
diperoleh yaitu:
5.3 Hukum Kekekalan Momentum
Gambar 5.1 Benda A dan Benda B Sebelum, saat dan setelah tumbukan
IMPULS = PERUBAHAN MOMENTUM
v’B FBA FAB v’A mB mA
VB
vA
Sebelum tumbukan Saat tumbukan Setelah tumbukan
136
Pada Gambar 5.1, misalkan benda A dan B masing-masing
mempunyai massa mA dan mB dan masing-masing bergerak segaris
dengn kecepatan vA dan vB sedangkan vA > vB. Setelah tumbukan
kecepatan benda berubah menjadi v’A dan v’B. Bila FBA adalah gaya dari
A yang dipakai untuk menumbuk B dan FAB gaya dari B yang dipakai
untuk menumbuk A, maka menurut Hukum III Newton:
AB BA F 􀀠 􀀐 F (5.7)
F t F t AB BA .􀀧 􀀠 􀀐 .􀀧
A B impuls 􀀠impuls
' ( ' )
A A A A B B B B m v 􀀐m v 􀀠 􀀐 m v 􀀐m v
' '
A A B B A A B B m v 􀀎m v 􀀠m v 􀀎m v (5.8)
Jumlah momentum dari A dan B sebelum dan sesudah
tumbukan adalah sama/tetap. Keadaan ini disebut sebagai Hukum
Kekekalan Momentum Linier.
Contoh Soal 4:
Sebuah peluru massa 5 gram ditembakkan dari senapan dengan
kecepatan 200 m/s, jika massa senapan 4 kg. Berapakah laju senapan?
Penyelesian:
Mula-mula peluru dan senapan diam, jadi:
vs = vp = 0
sehingga,
ms vs + mp vp = ms vs’ + mp vs’
0 = 4. vs’+ 0,005 kg.200 m/s
vs’= -0,25 m/s
Kecepatan senapan pada saat peluru ditembakan 0,25 m/s, tanda (-)
menyatakan arahnya kebelakang/tertolak.
Contoh Soal 5:
Dua orang nelayan massanya sama 60 kg berada di atas perahu yang
sedang melaju dengan kecepatan 5 m/s, karena mengantuk seoramg
nelayan yang ada diburitan terjatuh, jika massa perahu 180 kg.
Berapakah kecepatan perahu sekarang?
Penyelesaian:
Momentum mula-mula (perahu dan nelayan):
P1 = (2mo + mp).vp = (2.60 kg + 180 kg).5 m/s = 1500 kg.m/s
137
Momentum setelah seorang nelayan terjatuh:
P2 = (mo + mp).v’p = (60 kg + 180 kg). v’p = 240 kg. v’p
Sehingga menurut hukum kekekalan mementum, maka P1 = P2.
1500 kg.m/s = 240 kg. v’p
v’p = 6,25 m/s
5.4 Tumbukan
Pada setiap jenis tumbukan berlaku hukum kekekalan
momentum tetapi tidak selalu berlaku hukum kekekalan energi
mekanik, sebab sebagian energi mungkin diubah menjadi energi bentuk
lain, misalnya panas atau bunyi, akibat tumbukan atau terjadi
perubahan bentuk benda.
Besarnya koefisien restitusi (e) untuk semua jenis tumbukan berlaku :
(5.9)
dengan:
v’A; v’B= kecepatan benda A dan B setelah tumbukan
vA ; vB = kecepatan benda A dan B sebelum tumbukan
Macam tumbukan yaitu:
1. Tumbukan elastis sempurna, yaitu tumbukan yang tak
mengalami perubahan energi. Koefisien restitusi e = 1, berlaku
hukum kekekalan momentum dan hukum kekekalan energi
mekanik (kerena pada kedudukan/posisi sama, maka yang
diperhitungkan hanya energi kinetiknya)
2. Tumbukan elastis sebagian, yaitu tumbukan yang tidak berlaku
hukum kekekalan energi mekanik sebab ada sebagian energi
yang diubah dalam bentuk lain, misalnya panas. Koefisien
restitusi 0 < e < 1.
3. Tumbukan tidak elastis , yaitu tumbukan yang tidak berlaku
hukum kekekalan energi mekanik dan kedua benda setelah
tumbukan melekat dan bergerak bersama-sama. Koefisien
restitusi e = 0
Energi yang hilang setelah tumbukan dirumuskan:
Ehilang = 􀀶Eksebelum tumbukan - 􀀶Eksesudah tumbukan
Ehilang = { ½ mA vA
2 + ½ mB vB
2} – { ½ mA (vA’)2 + ½ mB (vB’)2}
Tumbukan yang terjadi jika bola dijatuhkan dari ketinggian h
meter dari atas lanmtai. Kecepatan bola waktu menumbuk lantai dapat
dicari dengan persamaan :
138
vA = 2gh
Kecepatan lantai sebelum dan sesudah tumbukan adalah 0.
vB = vB’ = 0
Dengan memsukkan persamaan tumbukan elastis sebagian :
diperoleh :
sehingga diperoleh :
h
e 􀀠 h'
dengan:
h’ = tinggi pantulan
h = tinggi bola jatuh.
Contoh Soal 6:
Dua bola dengan massa identik mendekati titik asal koordinat; yang
satu sepanjang sumbu +y dengan kecepatan 2 m/s dan yang kedua
sepanjang sumbu –x dengan kecepatan 3 m/s. Setelah tumbukan satu
bola bergerak keluar sepanjang sumbu +x dengan kecepatan 1,20
m/s. Berapakah komponen-komponen kecepatan dari bola lainnya?
Penyelesaian:
Pada tumbukan berlaku kekekalan momentum sehingga :
􀁸 Pada sumbu x berlaku: m1v1x + m2v2x = m1v1x’ +
m2v2x’
m(3) + 0 = m (1,2) + mv2x’
v2x’ = 1,8 m/s
􀁸 Pada sumbu y berlaku: m1v1y + m2v2y = m1v1y’ +
m2v2y’
0 + m (-2) = 0 + mv2y’
v2y’ = -2 m/s
Jadi, bola kedua bergerak dengan kecepatan 1,8 m/s pada sumbu-x
dan -2,0 m/s pada sumbu-y.
Contoh Soal 7:
139
Sebuah batu 2 kg bergerak dengan kecepatan 6 m/s. Hitunglah gaya
F yang dapat menghentikan batu itu dalam waktu 7.10-4 detik.
Penyelesaian:
Impuls = F.t = m (v – vo)
F. (7.10-4) = 2 (0 – 6) ; jadi F = - 1,71.104 Newton.
Contoh Soal 8:
Dua orang gadis (m1 dan m2) berada di atas sepatu roda dan dalam
keadaan diam, saling berdekatan dan berhadapan muka. Gadis 1
mendorong tepat pada gadis 2 dan menjatuhkannya dengan
kecepatan v2. Misalkan gadis-gadis itu bergerak bebas di atas sepatu
roda mereka, dengan kecepatan berapakah gadis 1 bergerak?
Penyelesaian:
Kita ambil kedua gadis mencakupi sistem yang ditinjau. Tidak ada
gaya resultan dari luar pada sistem (dorongan dari gadis terhadap
yang lain adalah gaya internal) dan dengan demikian momentum
dikekalkan.
Momentum sebelum = momentum sesudah, sehingga 0 = m1v1’ +
m2v2’
Jadi ' 2
1
, 2
1 v
m
v 􀀠 􀀐 m , gadis 1 bergerak mundur dengan kecepatan ini.
5.5 Kegiatan
Tujuan: mengamati jenis tumbukan
Langkah kerja:
1. Ambil benda sebanyak mungkin yang ada disekitar anda.
2. Jatuhkan dari ketinggian tertentu. Pilih ketinggian yang sama
untuk tiap benda.
3. Amati pantulan yang terjadi, kemudian catat dan masukan
dalam tabel berikut:
No Jenis Benda Lenting
Sempurna
Lenting
Sebagian
Tak lenting
140
Tugas 1:
A. Bahan : benang, bandul, malam
B. Alat : neraca analitis, penggaris 1m, 2 buah statif
C. Langkah Kerja:
1. Ikat bandung dengan benang dan gantungkan pada statif,
ikat penggaris pada statif yang lain. Letakkan kedua statif
di atas meja dengan jarak kira-kira sama dengan panjang
tali.
2. Lempar bandul dengan malam, sehingga terjadi ayunan,
usahakan malam dapat menempel pada bandul. Ukur tinggi
bandul berayun.
3. Timbang massa bandul dan massa malam.
4. Tentukan kecepatan bandul dan malam saat mulai berayun.
Tentukan pula kecepatan malam saat menumbuk bandul.
5.6 Rangkuman
1. Momentum merupakan hasil kali massa sebuah benda dengan
kecepatan. Momentum merupakan besaran vektor yang arahnya
searah dengan kecepatannya.
2. Impuls merupakan perubahan momentum yaitu hasil kali gaya
dengan waktu yang ditempuhnya. Impuls merupakan Besaran
vektor yang arahnya se arah dengan arah gayanya.
3. Macam-macam tumbukan:
a. Lenting sempurna, e = 1
b. Lenting sebagian, 0 < e < 1
c. Tak lenting, e = 0
4. Hukum kekekalan momentum: momentum awal = momentum
akhir
5.7 Soal Uji Kompetensi
1. Seorang pemain bisbol akan memukul bola yang datang padanya
dengan massa 2 kg dengan kecepatan 10 m/s, bola bersentuhan
dengan pemukul dalam waktu 0,01 detik sehingga bola berbalik
arah dengan kecepatan 15 m/s.
141
a. Carilah besar momentum awal
b. Carilah besar momentum akhir
c. Carilah besar perubahan momentumnya.
d. Carilah besar impulsnya.
e. Carilah besar gaya yang dialamibola.
2. Dua buah benda bermassa 5 kg dan 12 kg bergerak dengan
kecepatan masing-masing 12 m/s dan 5 m/s pada arah berlawanan.
Jika keduanya bertumbukan sentral, hitunglah:
a. Kecepatan masing-masing benda sesudah tumbukan dan
hilangnya energi jika tumbukannya elastis sempurna.
b. Kecepatan masing-masing benda sesudah tumbukan dan energi
yang hilang jika tumbukannya tidak elastis sama sekali.
3. Sebuah perahu sekoci bermassa 200 kg bergerak dengan kecepatan
2 m/s. dalam perahu tersebut terdapat orang dengan massa 50 kg.
Tiba-tiba orang tersebut meloncat dengan kecepatan 6 m/s.
Hitunglah kecepatan sekoci sesaat (setelah orang meloncat)
jika : a. arah loncatan berlawanan dengan arah sekoci.
b. arah loncatan searah dengan arah perahu.
4. Sebuah benda jatuh di atas tanah dari ketinggian 9 m. Ternyata
benda terpantul setinggi 1 meter. Hitunglah:
a. Koefisien kelentingan.
b. Kecepatan pantulan benda.
c. Tinggi pantulan setelah pantulan ketiga.
5. Sebuah peluru dari 0,03 kg ditembakkan dengan kelajuan 600 m/s
diarahkan ppada sepotong kayu yang massanya 3,57 kg yang
digantung pada seutas tali. Peluru mengeram dalam kayu, hitunglah
kecepatan kayu sesaat setelah tumbukan ?
6. Bola seberat 5 newton bergerak dengan kelajuan 3 m/s dan
menumbuk sentral bola lain yang beratnya 10 N dan bergerak
berlawanan arah dengan kecepatan 6 m/s. Hitunglah kelajuan
masing-masing bola sesudah tumbukan, bila:
a. koefisien restitusinya 1/3
b. tumbukan tidak lenting sama sekali
c. tumbukan lenting sempurna.
142
7. Sebuah bola dijatuhkan dari ketinggian 1½ m di atas sebuah lantai
lalu memantul setinggi 0,9 m. Hitunglah koefisien restitusi antara
bola dan lantai
8. Sebuah truk dengan berat 60.000 newton bergerak ke arah utara
dengan kecepatan 8 m/s bertumbukan dengan truk lain yang
bermassa 4 ton dan bergerak ke Barat dengan kecepatan 22 m/s.
Kedua truk menyatu dan bergerak bersama-sama. Tentukan besar
dan arah kecepatan truk setelah tumbukan.
9. Dua buah benda A dan B yang masing-masing massanya 20 kg dan
40 kg bergerak segaris lurus saling mendekati. A bergerak dengan
kecepatan 10 m/s dan B bergerak engan kecepatan 4 m/s. Kedua
benda kemudian bertumbukan sentral. Hitunglah energi kinetik
yang hilang jika sifat tumbukan tidak lenting sama sekali.
10. Sebuah peluru massanya 20 gram ditembakkan pada ayunan
balistik yang massanya 5 kg, sehingga ayunan naik 0,2 cm setelah
umbukan. Peluru mengeram di dalam ayunan. Hitunglah energi
yang hilang.

Momentum dan Impuls

Momentum dan Impuls dalam pembahasan fisika adalah sebagai satu kesatuan karena momentum dan Impuls dua besaran yang setara. Dua besaran dikatakan setara seperti momentum dan Impuls bila memiliki satuan Sistim Internasional(SI) sama atau juga dimensi sama seperti yang sudah dibahas dalam besaran dansatuan.  Posting kali ini akan sedikit membahas mengenai pengertian momentum dan impuls.

 
Pengertian Momentum
Momentum adalah hasil kali antara massa dan kecepatan. Secara matematis dapat dituliskan sebagai berikut
  P = m.v
Keterangan
  • P = momentum(kg.m/s)
  • M=massa(kg)
  • V=kecepatan(m/s)
Jadi momentum adalah besaran yang dimiliki oleh sebuah benda atau partikel yang bergerak.

Contoh
Sebuah bus bermassa 5 ton bergerak dengan kecepatan tetap 10 m/s. Berapa momentum yang dimiliki bus tersebut?
Penyelesaian:
Dengan menggunakan persamaan diatas maka kita mendapatkan besar momentum bus sebesar P = mv
P = 5000 kg x 20 m/s
P= 100000 kg m/s
(catatan 1 ton = 1000 kg)

Pengertian Impuls
Impuls adalah peristiwa gaya yang bekerja pada benda dalam waktu hanya sesaat. Atau Impuls adalah peristiwa bekerjanya gaya dalam waktu yang sangat singkat. Contoh dari kejadian impuls adalah: peristiwa seperti bola ditendang, bola tenis dipukul karena pada saat tendangan dan pukulan, gaya yang bekerja sangat singkat.
  I=F.Δt
Keterangan
  • I= impuls
  • F=gaya(N)
  • Δt=selang waktu(s)
Contoh:
Sebuah bola dipukul dengan gaya 50 Newton dengan waktu 0,01 sekon. Berapa besar Impus pada bola tersebut?
Penyelesaian
Dengan menggunakan persamaan diatas maka
I=F.Δt
I=50 N. 0,01s
I=0,5 Ns

Impuls sama dengan perubahan momentum
Suatu partikel yang bermassa m bekerja gaya F yang konstan, maka setelah waktu  Δt partikel tersebut bergerak dengan kecepatan
Vt=V0+ a Δt seperti yang sudah dibahas pada post glbb(gerak lurus berubah beraturan)
  F=m.a,
Dengan subtitusi kedua persamaan tersebut maka diperoleh
 I=F.Δt = mvt – mv0
Keterangan
  • mvt = mementum benda pada saat kecepatan vt
  • mv0 = mementum benda pada saat kecepatan v0
Contoh soal
Sebuah bola sepak massa 200 gram menggelinding ke arah timur dengan kecepatan 2 m/s. Ditendang dalam waktu 0,1 sekon. Sehingga kecepatannya menjadi 8 m/s pada arah yang sama. Tentukan gaya yang diberikan kaki penendang terhadap bola!
 
Soal ini bisa diselesaikan dengan  konsep   Impuls=perubahan momentum


Demikian posting kali ini semoga membantu buat siswa kelas 10 tentang Momentum dan Impuls, kurang lebih silakan tulis di kolom komentar
 

Blogger news

Blogroll

About